您的位置:首页>论文发表>2018
2018

徐向荣研究团队在《Journal of Cleaner Produ》发表论文

副标题:

时间:2018-05-01  作者:LMB  来源:文本大小:【 |  | 】  【打印

题目: Synergistic reduction of copper (II) and oxidation of norfloxacin over a novel sewage sludge-derived char-based catalyst: Performance, fate and mechanism

作者: Jin-Jun Liu, Zeng-Hui Diao*, Cui-Mei Liu, Dan Jiang, Ling-Jun Kong, Xiang-RongXu*

刊物: Journal of Cleaner Production

年卷期页: 2018,128:132-139

摘要:Nowadays, clean-up of waters with coexisting heavy metal ions and organic pollutants is of great environmental importance. In this study, a novel sewage sludge-derived char-based catalyst was firstly synthesized, and coupled with hydrogen peroxide for the simultaneous removal of copper (II) and norfloxacin in aqueous solutions. The most relevant findings revealed that zero-valent iron and zerovalent aluminum particles were successfully formed on the catalyst surface when the leaching of the sludge-derived char was reduced by the green tea extract. Nearly 100% of both copper (II) and norfloxacin were simultaneously removed due to a synergistic effect between the reduction of copper (II) and the oxidation of norfloxacin over the catalyst. The gradual addition mode of hydrogen peroxide exhibited a better performance on the simultaneous removal of copper (II) and norfloxacin. The coexisting anions like nitrate and phosphate had significant negative effects on the copper (II) removal, whereas carbonate, fluoride and phosphate had significant negative effects on the norfloxacin removal. Different copper species like zero-valent copper, copper oxide and copper hydroxide were identified in copper (II) reduction process, whereas a total of eight oxidative products were identified in norfloxacin oxidation process. A possible reaction mechanism for the simultaneous removal of copper (II) and norfloxacin by the sewage sludge-derived char-based catalyst/hydrogen peroxide system was proposed. The adsorption of both copper (II) and norfloxacin over the catalyst were firstly occurred, and then the reduction of copper (II) over both zero-valent iron and zero-valent aluminum particles on the catalyst surface as well as the Fenton oxidation of norfloxacin were followed.

相关附件
相关文档
Copyright    中国科学院热带海洋生物资源与生态重点实验室    版权所有
地址:广东省广州市新港西路164号  邮编:510301
电话:020-89023101  传真:86-20-84451672  Email:liujuan@scsio.ac.cn