您的位置:首页>论文发表>2019
2019

张黎研究团队在《Environment International》发表论文

副标题:

时间:2019-06-27  作者:LMB  来源:文本大小:【 |  | 】  【打印

题目: Bioaccumulation and translocation of tetrabromobisphenol A and hexabromocyclododecanes in mangrove plants from a national nature reserve of Shenzhen City,South China

作者: Huawei Li, Yongxia Hu, Yuxin Sun, Amila O. De Silva, Derek C.G. Muir, Weiwei Wang, Jinli Xie, Xiangrong Xu, Nancai Pei, Yanmei Xiong, Xiaojun Luo, Bixian Mai

刊物: Environment International

年卷期页: 2019,129,239-246

摘要:Brominated flame retardants (BFRs) such as tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) are of ecological concern due to their ubiquitous presence and adverse effects. There is a paucity of data on environmental fate of such compounds in mangrove wetlands, which are unique ecosystems in coastal intertidal areas and act as natural sinks for many pollutants. In this study, mangrove plants and sediments were collected from an urban nature reserve in South China to investigate bioaccumulation and translocation of TBBPA and HBCDs. The mean (range) concentrations of TBBPA and ΣHBCD in roots, stems and leaves were 67 (<MDL-999), 174 (0.73-1105) and 20 (0.59-250) pg/g dry weight (dw), and 329 (15.6-2234), 766 (32.9-3255) and 298 (19.9-1520) pg/g dw, respectively. Tissue-specific accumulations were observed, varying with plant species and compounds. HBCD diastereoisomer patterns were similar for all plant species. γ-HBCD was the major diastereoisomer in roots, while α-HBCD dominated in stems and leaves. The predominance of α-HBCD in aboveground tissues may be ascribed to diastereoisomer-specific translocation, isomerization and/or metabolization in mangrove plants. Preferential enrichment of (-)-α-, (-)-β- and (+)-γ-HBCDs was found in all mangrove plant tissues, suggesting the enantioselectivity for HBCDs in mangrove plants. Translocation factors (log TF, root to stem) of HBCD diastereoisomers and log Kow were negatively correlated (p = 0.03), indicating passive translocation of HBCDs, driven by water movement during transpiration. Sediment-root bioaccumulation factors and log TFs (stem to leaf) both showed no obvious correlation with log Kow of HBCD diastereoisomers. These results reflected the complex behavior of HBCDs in mangrove plants, which have not been sufficiently captured in laboratory-based studies of plant contaminant accumulation.

相关附件
相关文档
Copyright    中国科学院热带海洋生物资源与生态重点实验室    版权所有
地址:广东省广州市新港西路164号  邮编:510301
电话:020-89023101  传真:86-20-84451672  Email:liujuan@scsio.ac.cn