夏晓敏研究员团队在《Water Research》发表论文
副标题:
题目: The in-situ release of algal bloom populations and the role of prokaryotic communities in their establishment and growth |
作者: Xiao Ma, Kevin B. Johnson, Bowei Gu, Hao Zhang, Gang Li, Xiaoping Huang, Xiaomin Xia |
刊物: Water Research |
年卷期页: 2022, 118565 |
摘要:Harmful algal blooms (HABs) may quickly travel and inoculate new water bodies via currents and runoff in estuaries. The role of in-situ prokaryotic communities in the re-establishment and growth of inoculated algal blooms remains unknown. A novel on-board incubation experiment was employed to simulate the sudden surge of algal blooms to new estuarine waters and reveal possible outcomes. A dinoflagellate (Amphidinium carterae) and a diatom species (Thalassiosira weissflogii) which had bloomed in the Pearl River Estuary (PRE) area were cultured to bloom densities and reintroduced back into PRE natural seawaters. The diatom showed better adaptation ability to the new environment and increased significantly after the incubation. Simultaneously, particle-attached (PA) prokaryotic community structure was strongly influenced by adding of the diatom, with some opportunistic prokaryotes significantly enhanced in the diatom treatment. Whereas the dinoflagellate population did not increase following incubation, and their PA prokaryotic community showed no significant differences relative to the control. Metagenomic analyzes revealed that labile carbohydrates and organic nitrogen produced by the diatom contributed to the surge of certain PA prokaryotes. Genomic properties of a bacteria strain, which is affiliated with genus GMD16E07 (Planctomycetaceae) and comprised up to 50% of PA prokaryotes in the diatom treatment, was described here for the first time. Notably, the association of Planctomycetaceae and T. weissflogii likely represents symbiotic mutualism, with the diatom providing organic matter for Planctomycetaceae and the bacteria supplying vitamins and detoxifying nitriles and hydrogen peroxides in exchange. Therefore, the close association between Planctomycetaceae and T. weissflogii promoted the growth of both populations, and eventually facilitated the diatom bloom establishment. |